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Most prevalent neurodegenerative disorders take decades to develop and their early detection is challenged by confounding non-

pathological ageing processes. For all neurodegenerative conditions, we continue to lack longitudinal gene expression data covering

their large temporal evolution, which hinders the understanding of the underlying dynamic molecular mechanisms. Here, we

overcome this key limitation by introducing a novel gene expression contrastive trajectory inference (GE-cTI) method that reveals

enriched temporal patterns in a diseased population. Evaluated on 1969 subjects in the spectrum of late-onset Alzheimer’s and

Huntington’s diseases (from ROSMAP, HBTRC and ADNI datasets), this unsupervised machine learning algorithm strongly

predicts neuropathological severity (e.g. Braak, amyloid and Vonsattel stages). Furthermore, when applied to in vivo blood samples

at baseline (ADNI), it significantly predicts clinical deterioration and conversion to advanced disease stages, supporting the iden-

tification of a minimally invasive (blood-based) tool for early clinical screening. This technique also allows the discovery of genes

and molecular pathways, in both peripheral and brain tissues, that are highly predictive of disease evolution. Eighty-five to ninety

per cent of the most predictive molecular pathways identified in the brain are also top predictors in the blood. These pathways

support the importance of studying the peripheral-brain axis, providing further evidence for a key role of vascular structure/

functioning and immune system response. The GE-cTI is a promising tool for revealing complex neuropathological mechanisms,

with direct implications for implementing personalized dynamic treatments in neurology.
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Introduction
In recent decades, we have witnessed an accelerated char-

acterization of the molecular and neuropathological mech-

anisms underlying neurodegenerative progression. Thanks

to cutting-edge technological and methodological advances

in genomic and proteomic analysis, we foresee unlimited

methodological possibilities for understanding and modify-

ing the role of genes and protein in disease (Esvelt and

Wang, 2012; Tan et al., 2012; Smith et al., 2016;

Mostafavi et al., 2018). Gene expression examination has

been of crucial value, revealing disease-specific differen-

tiated genes/molecular pathways and gene-gene networks

with a direct effect in neuropathological and cognitive/clin-

ical deterioration (Zhang et al., 2013; Mostafavi et al.,

2018). However, neurodegenerative conditions may take

decades to develop and gene expression mapping tech-

niques are quite recent, hence the unavailability of individ-

ual gene expression datasets covering a given disease’s

whole evolution. All reported studies are based on cross-

sectional or short-term longitudinal data, while we continue

to lack long-term datasets covering the several phases

underlying neurodegeneration.

In addition, because of its highly invasive nature, brain

gene expression studies in neurodegeneration are based on

post-mortem tissue samples. There are major challenges

associated with the translation/extrapolation of ex vivo re-

sults to in vivo conditions (Ferreira et al., 2018). This could

imply that disease mechanisms (e.g. gene-gene causal net-

works) and potential biomarkers identified with post-

mortem data may well not be entirely generalizable to

live patients. In this sense, peripheral molecular measure-

ments (e.g. plasma gene expression) may be used to cross-

validate post-mortem based methodologies and findings,

potentially providing minimally invasive in vivo biomarkers

for accurate patient screening in the daily clinic and clinical

trials implementation. Nevertheless, the lack of comprehen-

sive longitudinal peripheral datasets, covering multiple dis-

ease stages at the individual level, makes in vivo dynamic

molecular analyses unpractical. Consequently, this affects

the identification of robust peripheral biomarkers across

continuous disease stages and variants.

Because of the proven ability to disentangle temporal

components from high-dimensional cross-sectional data,

novel unsupervised machine learning techniques offer a

viable opportunity for dealing with the previous limitations.

The data-driven reconstruction of pseudo-temporal paths to

order observations (e.g. cells, subjects) is revolutionizing

‘omics’ studies, enabling for the first time the mapping of

complex dynamic processes using cross-sectional ‘snap-

shots’ (Magwene et al., 2003; Gupta and Bar-Joseph,

2008; Cannoodt et al., 2016; Welch et al., 2016). Based

on the machine learning inference of a low dimensional

space embedded in a population’s ‘omics’ data, and by

creating a relative ordering of the individuals, we can ac-

curately identify a series of molecular states that constitute

a longitudinal trajectory for a process of interest (Campbell

and Yau, 2018). When used in RNA-seq studies, this novel

technique has provided an unprecedented insight into the

evolution of multiple pathologies. It has also allowed track-

ing and dissecting differentiated spatiotemporal programs

in single-cell analysis (Briggs et al., 2018).

Driven by the imperative of a better understanding and

an earlier detection of neurodegeneration, here we extend

pseudotemporal trajectory inference to the analysis of both

post-mortem and in vivo (blood) gene expression neurode-

generative samples. First, to address important methodo-

logical limitations in data exploration and visualization,

we introduce the contrastive trajectory inference (cTI) algo-

rithm. This allows the unsupervised identification and

ordering of enriched patterns in a diseased population

(e.g. Alzheimer’s and Huntington’s diseases) relative to a

comparison background population (e.g. healthy elderly).

Next, we analyse gene expression samples from blood

plasma of 744 subjects in the spectrum of late-onset

Alzheimer’s disease (LOAD) and from 1225 autopsied

brains in the spectrum of LOAD and Huntington’s disease.

Our method provides molecular pathological scores that

are highly predictive of neuropathological and cognitive/

clinical deterioration. The results are strongly consistent

for both in vivo and post-mortem data. In addition, it

allows identification of genes and molecular pathways driv-

ing neurodegenerative progression, as well as analysis of

(dis)similarities in molecular disease mechanisms at brain

and peripheral tissue levels. The inference of contrasted

genetic trajectories is a promising tool for understanding

complex neuropathological mechanisms and for minimally

invasive patient screening at the daily clinic, with practical

implications for implementing personalized medical inter-

ventions in neurology.

Materials and methods

Study participants

This study used gene expression data (ntotal = 1969) from
three large-scale databases (see Supplementary Table 1 for
demographic characteristics). Each dataset was processed and
analysed independently.

Dataset 1

RNA expression data from the prefrontal cortex of a subset of
489 autopsied subjects were downloaded from the Religious
Orders Study (ROS) (Bennett et al., 2012a) and the Memory
and Aging Project Study (MAP) (Bennett et al., 2012b). These
data (Bennett et al., 2018) are available at the Accelerating
Medicines Partnership Alzheimer’s Disease (AMP-AD) know-
ledge portal (https://www.synapse.org/#, Synapse ID
3800853). ROS (Bennett et al., 2012a) and MAP (Bennett
et al., 2012b) are longitudinal clinical-pathological cohort stu-
dies of ageing, Alzheimer’s disease and related disorders.
Enrolment required no known sign of dementia. Upon death,
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a post-mortem neuropathological evaluation is performed that
includes a uniform structured assessment of Alzheimer’s dis-
ease pathology, cerebral infarcts, Lewy body disease, and other
pathologies common in ageing and dementia. The pathological
diagnosis of Alzheimer’s disease uses NIA-Reagan and modi-
fied CERAD criteria, and the staging of neurofibrillary path-
ology uses Braak staging (Braak, 1991). An RNA integrity
number (RIN) score 45 and a quantity threshold (5 mg) for
each sample were required (Bennett et al., 2014). cRNA was
hybridized to Illumina HT-12 Expression Bead Chip (48 803
transcripts) via standard protocols using an Illumina Bead
Station 500GX (Webster et al., 2009; Zhang et al., 2013).

Dataset 2

Seven hundred and thirty-six individual post-mortem tissue
samples from the dorsolateral prefrontal cortex Brodmann
area (BA)9 of LOAD patients (n = 376), Huntington’s disease
patients (n = 184) and non-demented subjects (n = 173) were
collected and analysed (Zhang et al., 2013). All autopsied
brains were collected by the Harvard Brain Tissue Resource
Center (HBTRC; GEO accession number GSE44772), and
included subjects for whom both the donor and the next-of-
kin had completed the HBTRC informed consent (http://www.
brainbank.mclean.org/). Correspondingly, tissue collection and
the research were conducted according to the HBTRC guide-
lines (http://www.brainbank.mclean.org/). Post-mortem inter-
val (PMI) was 17.8 � 8.3 h, sample pH was 6.4 � 0.3 and
RIN was 6.8 � 0.8 for the average sample in the overall
cohort.

As previously described (Zhang et al., 2013), RNA prepar-
ation and array hybridizations applied custom microarrays
manufactured by Agilent Technologies consisting of 4720 con-
trol probes and 39 579 probes targeting transcripts represent-
ing 25 242 known and 14 337 predicted genes. Arrays were
quantified based on spot intensity relative to background, ad-
justed for experimental variation between arrays using average
intensity over multiple channels, and fitted to an error model
to determine significance (Emilsson et al., 2008). Braak stage,
general and regional atrophy, grey and white matter atrophy
and ventricular enlargement were assessed and catalogued by
pathologists at McLean Hospital (Belmont, MA, USA). In add-
ition, the severity of pathology in the Huntington’s disease
brains was determined using the Vonsattel grading system
(Vonsattel et al., 1985).

Dataset 3

This study used a total of 744 individuals’ data with blood
gene expression information from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) (adni.loni.usc.edu). The par-
ticipants underwent multimodal brain imaging evaluations,
including amyloid PET, tau PET and/or structural MRI. The
ADNI was launched in 2003 as a public-private partnership,
led by principal investigator Michael W. Weiner, MD. The
primary goal of ADNI has been to test whether serial MRI,
PET, other biological markers, and clinical and neuropsycho-
logical assessments can be combined to measure the progres-
sion of mild cognitive impairment (MCI) and early Alzheimer’s
disease.

The Affymetrix Human Genome U219 Array (www.affy-
metrix.com) was used for gene expression profiling from

blood samples. Peripheral blood samples were collected
using PAXgeneTM tubes for RNA analysis (Saykin et al.,
2015). The quality-controlled gene expression data include
activity levels for 49 293 transcripts. All the participants
were characterized cognitively using the Mini-Mental State
Examination (MMSE), a composite score of executive func-
tion, a composite score of memory integrity (MEM) (Gibbons
et al., 2012), and Alzheimer’s Disease Assessment Scale-
Cognitive Subscales 11 and 13 (ADAS-11 and ADAS-13, re-
spectively). Also, they were clinically diagnosed at baseline as
healthy control, early MCI, late MCI or probable Alzheimer’s
disease patient (LOAD).

18F-AV-45 (amyloid-specific) and 18F-AV-1451 (tau-specific)
PET images were acquired for a subset of 660 and 166 sub-
jects, respectively. Both amyloid and tau images were prepro-
cessed by the Jagust Laboratory (UC Berkeley, USA; Jagust
et al., 2010). Using the amyloid images, subjects were categor-
ized as amyloid positive (Ab + ) or negative (Ab–) by applying
a cut-off of 1.11 to a florbetapir composite standardized
uptake value ratio (SUVR) normalized by the whole cerebel-
lum reference (described in Landau and Jagust, 2015). Also,
individual Freesurfer-defined cortical and subcortical brain re-
gions were used to calculate weighted Flortaucipir averages for
each region, which were normalized by the weighted flortau-
cipir at the cerebellum (described in Landau and Jagust, 2018).
Based on the lobar classification topographic staging scheme
for tau PET and the corresponding cut-off values proposed by
Schwarz et al. (2018), the subjects were staged in Braak 0 (no
tau), Braak I/II, Braak III/IV or Braak V/VI. Subsequently, they
were categorized as tau negative (tau–) or positive (tau + ) if
they were in the stages 0 or I–VI, respectively. Structural MRI
images for 741 subjects were analysed by a physician specially
trained in the detection of MRI infarcts. The presence of MRI
infarction was determined from the size, location and imaging
characteristics of the lesion, with only lesions 3 mm or larger
qualifying for consideration as cerebral infarcts (described in
DeCarli et al., 2013). Finally, a subset of subjects (n = 30) was
evaluated for pathological brain lesions after death.
Pathological lesions were assessed using established neuro-
pathological diagnostic criteria (described in Cairns, 2018).
The analysis included histopathological assessments of amyl-
oid-b deposits, staging of neurofibrillary tangles, scoring of
neuritic plaques and assessments of co-morbid conditions
such as Lewy body disease, vascular brain injury, hippocampal
sclerosis, and TAR DNA-binding protein (TDP) immunoreac-
tive inclusions (Montine et al., 2012).

Contrastive trajectories inference

Given a multi-dimensional population dataset, the inference of
contrasted pseudotemporal trajectories (and an individual
pseudotime value) consists of three main steps:

(i) For high-dimensional datasets (e.g. �40 000 transcripts), ini-

tial selection of features most likely to be involved in a trajec-

tory across the entire population. We apply the unsupervised

method proposed by Welch et al. (2016), which does not re-

quire prior knowledge of features involved in the process or

differential expression analysis. Features are scored by compar-

ing sample variance and ‘neighbourhood variance’. Specifically,

for a gene transcript g, its sample variance �2
g across all samples
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is calculated. Then, the ‘neighbourhood variance’ is computed

as:

S2ðNÞ
g ¼

1

Ntranscriptskc � 1
�
XNgenes

i¼1

Xkc

j¼1
eig � eNðijÞg

� �2
ð1Þ

where Ntranscripts is the total number of gene transcripts, eij is
the expression level of the jth transcript in the ith sample,
N(i, j) is the jth nearest neighbour of sample i, and kc is the
minimum number of neighbours needed to yield a connected
graph. S2ðNÞ

g is similar to the sample variance computed with
respect to neighbouring points rather than the mean, mea-
suring how much g varies across neighbouring samples.
Intuitively, gene transcripts most likely to be involved in a
trajectory should present a more gradual variation across
neighbouring points than at global scale, which would cor-
respond to a high ratio �2

g=S
2ðNÞ
g . Thus, a threshold is applied

to select those features with higher �2
g=S

2ðNÞ
g score, e.g. we

kept the features with at least a 0.95 probability of being
involved in a trajectory (i.e. �3000 gene transcripts).

(ii) Data exploration and visualization via contrastive prin-

cipal component analysis (cPCA) (Abid et al., 2018). This

novel technique identifies low-dimensional patterns that are

enriched in a target dataset (e.g. a diseased population) rela-

tive to a comparison background dataset (e.g. demographic-

ally matched healthy subjects). By controlling the effects of

characteristic patterns in the background (e.g. pathology-free

and spurious associations, noise), cPCA (Abid et al., 2018)

allows visualizing specific data structures missed by standard

data exploration and visualization methods (e.g. PCA,

Kernel PCA). Specifically, if Ctarget and Cbackground are the

covariance matrices of the target and background data, the

directions returned by cPCA are the singular vectors of the

weighted difference of the co-variance matrices: Ctarget –

��Cbackground. The contrast parameter � represents the

trade-off between having the high target variance and the

low background variance. Multiple values of � are used

(i.e. 100 logarithmically equally spaced points between 10–

2 and 102). Instead of choosing a single �, the resulting

subspaces for all the �-values are clustered (based in their

proximity in terms of the principal angle and spectral clus-

tering) (Ng et al., 2002) in a few subspaces. The data are

then projected onto each of these few subspaces, revealing

different trends within the target data. While the original

cPCA algorithm proposes to select the final subspace via

visual examination, we chose automatically the subspace

that maximizes the clustering tendency in the projected

target data. For this, the ‘gap’ cluster evaluation criterion,

implemented in the MATLAB function evalclusters, was

used. When cPCA was applied to the selected gene expres-
sion transcripts [from step (i)], for each population, we ob-
tained about six to eight contrasted principal components
capturing the most enriched pathological properties relative
to the background (i.e. subjects without cognitive deterior-
ation and neuropathological signs). For ROSMAP, HBTRC
and ADNI, sample sizes of the background populations were
177 (36%), 173 (23%) and 113 (15%), respectively.
Selected �-values for these three studied datasets were:
11.76 (ROSMAP), 17.07 (HBTRC) and 11.76 (ADNI).

(iii) Subject ordering and gene expression-pseudotime calcu-

lation according to their proximity to the background popu-

lation in the contrasted principal components space. For

this, we first calculated the Euclidean distance matrix

among all the subjects and the associated minimum span-

ning tree (MST). The MST was then used to calculate the

shortest trajectory/path from any subject to the background

subjects. Each specific trajectory consists of the concaten-

ation of relatively similar subjects, with a given behaviour

in the data’s dimensionally reduced space. The position of

each subject in his/her corresponding shortest trajectory re-

flects the individual proximity to the pathology-free state

(the background) and, if analysed in the inverse direction,

to advanced disease state. Thus, to quantify the distance to

these two extremes (background or disease), an individual

gene expression-pseudotime score is calculated as the short-

est distance value to the background’s centroid, relative to

the maximum population value (i.e. values are standardized

between 0 and 1). Finally, the subjects are ordered according

to their gene expression-pseudotime values, from low (close

to the background group) to high values (close to the most

diseased subjects).

Additionally, to evaluate cPCA’s performance versus other
popular dimensionality reduction techniques, we repeated
step (ii) using the traditional PCA (Abdi and Williams, 2010)
and the recently proposed non-linear Uniform Manifold
Approximation and Projection for Dimension Reduction
(UMAP) approach (McInnes et al., 2018). Subsequently, we
reapplied step (iii), obtaining alternative subject orderings
(and gene expression-pseudotimes) according to their proxim-
ity to the background population in the resulting PCA and
UMAP components space.

Statistics

Data preprocessing

Before applying the contrastive trajectory inference (cTI) ap-
proach, each gene transcript’s activity was adjusted for rele-
vant covariates using robust additive linear models (Street
et al., 1988). Specifically, Dataset 1 gene expression was ad-
justed for post-mortem interval (PMI) in hours, age, gender
and educational level. Dataset 2 gene expression was adjusted
for PMI, sample pH, RIN, age and gender. Dataset 3 gene
expression was controlled for RIN, plate number, age,
gender and educational level. Also, each adjusted gene tran-
script activity was approximately transformed into a normal
distribution via the Box-Cox transformation (Box and Cox,
1964), implemented in the MATLAB function boxcox.

Post hoc analyses

All predictive associations between grouping variables (e.g.
Braak, CERAD and Vonsattel stages, clinical diagnosis) and
the individual gene expression-pseudotimes were tested with
ANOVA tests, familywise error (FWE)-controlled by permuta-
tions (Legendre and Legendre, 1998). For each dataset, the
total contribution Ci of each gene transcript i to the obtained
reduced representation space (and the genetic trajectories) was
quantified as in Abdi and Williams (2010):
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Ci ¼ 100 �
XNcPC

j¼1
�norm

j �
!2

i;jPNgenes

k¼1 !2
i;j

0
@

1
A ð2Þ

where �norm
j ¼ �j �min �

� �
=
PNtotal

k¼1 �k �min �ð Þ is the normal-
ized eigenvalue of the contrasted principal component j, min �
is the minimum obtained eigenvalue, Ntotal is the original
number of contrasted principal components, NcPC is the
number of contrasted principal components with �norm

j over
a predefined cut-off value (i.e. 0.025), !i;j is the loading/
weight of the gene transcript i on the component j, and
Nfeatures is the total number of gene transcripts considered in
the dimensionality reduction analysis. Similarly, the expected
contribution value (cut-off) was calculated as in Abdi and
Williams (2010):

Cexpected ¼ 100 �
XNcPC

j¼1
�norm

j �
1

Nfeatures

� �
ð3Þ

The gene transcripts with total contribution Ci over the ex-
pected contribution value Cexpected were considered as highly
influential to obtain the reduced representation space.

Data and code availability

The three datasets used in this study are available at the AMP-
Alzheimer’s disease knowledge portal (https://www.synapse.org/
#, Synapse ID 3800853), the Gene Expression Omnibus (GEO
accession number GSE44772) and the ADNI database (www.
adni.loni.usc.edu), respectively. We anticipate that the cTI
method will be released soon as part of an open access user-
friendly software. In the meantime, the MATLAB codes can be
downloaded from http://www.neuropm-lab.com.

Results

Inferring enriched gene expression
neurodegenerative trajectories

Gene expression, neuropathology and cognitive/clinical

deterioration in 1969 demented and non-demented sub-

jects from three large-scale studies were assessed (Fig. 1

and Datasets 1–3). Gene expression and neuropathology

evaluations from both Dataset 1 (n = 489, ROSMAP

Study) and Dataset 2 (n = 736, HBTRC database) were

performed in autopsied brains, with genetic profiling

from the prefrontal cortex. Gene expression from

Dataset 3 (n = 744, ADNI database) was obtained from

in vivo blood samples, with all subjects also having brain

imaging evaluations including amyloid PET, tau PET and/

or structural MRI.

Aiming to uncover the molecular reconfigurations under-

lying neurodegenerative evolution, we proceeded to re-

order the gene expression patterns (Fig. 1). For this, we

implemented a novel unsupervised algorithm for detecting

enriched trajectories in a diseased population relative to a

background dataset (e.g. normal controls). A distinctive

feature of cTI is the use of a contrastive PCA algorithm

(Abid et al., 2018), which controls by the principal

components of the background data to optimize the ex-

ploration and visualization of the target. It is a generic

algorithm, adaptable to different types of data (e.g. gen-

omic, proteomic, imaging, clinical). Each gene expression

dataset was first adjusted for relevant confounding covari-

ates (e.g. RIN, age, gender and/or educational level). Next,

the cTI was independently applied to the three popula-

tions, providing population-specific trajectories starting

on the background data. Each trajectory was composed

by the concatenation of a subset of subjects, which fol-

lowed a given behaviour in the data’s dimensionally

reduced space. We hypothesized that the position of each

subject in these gene expression trajectories would reflect

individual proximity to the pathology-free state (the back-

ground) or, if analysed in the inverse direction, proximity

to advanced disease states. Correspondingly, a gene ex-

pression-pseudotime value [(0, 1) range] was calculated

for each subject, with relatively low values for subjects

with final positions close to the background data, and

high values for subjects on the distant extremes of the

population. Notice that gene expression-pseudotime could

then be assumed as an individual molecular score of

pathological progression, the validity of which is tested

in the following sections (Fig. 1).

Post-mortem gene expression
trajectories predict
neurodegenerative severity

First, we analysed the gene expression trajectories obtained

for the ROSMAP study (Dataset 1, n = 489). The results

(Fig. 2A–C) showed a clear association between the

obtained molecular disease score (gene expression-pseudotime)

and the autopsied tau and amyloid assessments, with a

higher gene expression-pseudotime value implying an

advanced neuropathological state. Group differences in

gene expression-pseudotime values were statistically

tested via ANOVA tests with permutations. We found

robust significant associations between the gene expres-

sion-pseudotimes and Braak stages (Fig. 2A; F = 4.09,

P = 0.001, FWE-corrected), CERAD stages (Fig. 2B;

F = 9.23, P5 0.001, FWE-corrected), and a composite

variable (Braak + CERAD) reflecting the simultaneous

presence of tau and amyloid (Fig. 2C; F = 5.97,

P50.001, FWE-corrected).

Next, we explored the generalizability of these results in

the considerably more heterogeneous database from

HBTRC (Dataset 2, n = 736), including two different dis-

orders (LOAD and Huntington’s disease) and non-demen-

ted controls. As with the previous findings, we observed a

positive association between the individual molecular dis-

ease score and the levels of neuropathological affectation

in both disorders (Fig. 2D and E). The gene expression-

pseudotimes were significantly associated with the Braak

stages (Fig. 2D; F = 11.17, P5 0.001, FWE-corrected)

and the Vonsattel stages (Fig. 2E; F = 9.04, P5 0.001,
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FWE-corrected). The fact that this population included

multiple disorders did not seem to affect the robustness

of the subject ordering in relation to disease progression,

which supports the identification of a promising bio-

marker for the analysis of co-morbid neurological

conditions.

Importantly, when compared with the individual mo-

lecular disease scores obtained using the contrastive

PCA algorithm (Abid et al., 2018) with those obtained

using the traditional PCA and the novel non-linear

UMAP approaches, we observed that cPCA-based re-

sults significantly outperformed PCA- and UMAP-

based results. Essentially, the gene expression-pseudo-

times obtained with PCA and UMAP did not show

any significant association with neuropathological vari-

ables (all P 4 0.3, FWE-corrected) (Supplementary Fig.

1). This finding strongly supports the key advantage of

considering the enriched patterns in the population of

interest relative to the background dataset (Abid et al.,

2018).

Figure 1 Schematic approach for gene expression trajectories analysis in neurodegeneration. (1) In vivo blood (n = 744) and post-

mortem brain (n = 1225) tissues collected. (2) RNA expression for �40 000 transcripts (dataset-specific). (3) The high dimensional data are

automatically reduced to an enriched space (about five features) via a contrastive PCA algorithm (cPCA) (Abid et al., 2018), which optimizes the

exploration and visualization of the target population’s data. (4) In the contrasted principal components (cPC) space, each subject is assigned to a

gene expression trajectory. The subject’s position in the corresponding gene expression trajectory reflects the individual proximity to the

pathology-free state (the background) and, if analysed in the inverse direction, to the advanced disease state. An individual gene expression-

pseudotime score is calculated, reflecting the distance to these two extremes (background or disease). (5) When taken as an individual molecular

score of disease evolution, the gene expression-pseudotime significantly associates with neuropathological and/or cognitive measurements.

(6) Both in peripheral and brain tissues, the cPCA’s loadings (or weights) allow the identification and posterior functional analysis of most

informative genes in terms of pathological evolution.
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Blood gene expression as a robust
biomarker of in vivo
neuropathological severity and
clinical deterioration

Next, we aimed to investigate if the unsupervised ordering

of gene expression patterns present in the blood can reflect

neuropathological severity and, importantly, if it could be

used as a marker of present and future clinical deterior-

ation. If successful, the latter could have strong implications

for the in vivo detection of future disease evolution in the

clinic and to decide if a patient should be therapeutically

treated or not. To test this, we identified the enriched gene

expression trajectories in the plasma of 744 participants in

the spectrum of LOAD from ADNI (Dataset 3), taking as

background 113 subjects without cognitive/clinical alter-

ations or any evidence of amyloid deposition or cerebral

infarcts.

In line with our previous findings with the ROSMAP and

HBTRC post-mortem data, the ADNI-based results

(Fig. 2F–J) showed a significant predictive power of patho-

logical severity. The individual gene expression-pseudotime

values vastly reflected the differences in tau positivity

(Fig. 2F; F = 17.64, P50.001, FWE-corrected), amyloid

positivity (Fig. 2G; F = 28.22, P50.001, FWE-corrected),

tau-amyloid co-morbidity (Fig. 2H; F = 9.58, P5
0.001, FWE-corrected), brain infarcts (Fig. 2I; F = 5.32,

P50.05, FWE-corrected), and tau-amyloid infarcts co-

morbidity (Fig. 2J; F = 7.49, P5 0.001, FWE-corrected).

In addition, we tested if the identified subject ordering

based on enriched gene expression patterns was predictive

of the individual clinical and cognitive properties (Fig. 3A–

D). We observed that the molecular disease score values

were significantly associated with the individual clinical

diagnosis (Fig. 3A; F = 56.72, P50.001, FWE-corrected).

Importantly, they were also significantly associated with the

individual clinical conversion (Fig. 3B; F = 56.61,

P50.001, FWE-corrected). Subjects with a same clinical

diagnosis at baseline, but significantly higher gene expres-

sion-pseudotimes, were consistently progressing to a more

advanced disease state in an average period of 3.18 years

[standard deviation (SD) 2.33]. The molecular disease score

values were also significantly associated with executive

function (Fig. 3C; R = 0.23, P50.001) and memory per-

formance (Fig. 3D; R = 0.27, P50.001). However, the as-

sociations with these continuous cognitive metrics were

characterized by a low predictive power, only explaining

�5.3–7.3% of the population variance, respectively. We

attribute this to both the lack of highly precise metrics

for evaluating memory and executive function and the in-

ability of the gene expression-pseudotimes to reflect spe-

cific aspects/components of each individual’s cognitive

deterioration.

Altogether, these results support that, in the context of in

vivo LOAD and the ADNI population, the subject’s tem-

poral ordering based on enriched blood gene expression

patterns is strongly reflective of neuropathological and

overall clinical deterioration, as well as future disease pro-

gression. It is, however, a considerably less powerful pre-

dictor of the detailed alterations observed in memory and

executive function.

In vivo and post-mortem molecular
pathways underlying LOAD
progression

Next, we aimed to identify the genes, molecular functions

and pathways responsible for the accurate prediction of

neurodegenerative progression in LOAD. We also intended

to clarify if similar predictive mechanisms were common to

the periphery (blood) and brain tissues. In this context, the

gene expression (GE)-cTI can provide a quantitative map-

ping of the most influential genes during the process of

diseased trajectories inference. Specifically, the cPCA’s load-

ings (or weights) reflect how much each specific gene, in the

original high dimensional space (i.e. �40 000 transcripts),

contributed to the reduced low dimensional space from

which the trajectories were obtained. Thus, we used these

weights to select the genes most influential on the subject’s

ordering, i.e. those genes driving the observed population

differences predictive of neuropathological and cognitive/

clinical alterations across the disease’s evolution. Based on

the dataset-specific identified genes, we then performed

large-scale gene functional analyses with the protein anno-

tation through evolutionary relationship (PANTHER) clas-

sification system (Mi et al., 2013). In addition, using a

recently reported comprehensive meta-analysis of brain

cell type gene signatures (Mckenzie et al., 2018), we iden-

tified the cell types consistently associated with the most

predictive genes in the brain. Of note, because these ana-

lyses were restricted to LOAD evolution, Huntington’s dis-

ease patients were excluded when using the HBTRC

database.

For the ROSMAP brains, we found 845 highly influential

genes with 88 functional pathways (Fig. 4A, E and

Supplementary Tables 2 and 3). These Gene Ontology

(GO) over-represented pathways were highly sensitive for

the detection of biological processes that are commonly

associated with neuropathological and cognitive deterior-

ation mechanisms, including axon guidance, histamine H1

receptor mediation, angiogenesis, inflammation mediated

by chemokine and cytokine signalling, Wnt and VEGF sig-

nalling, apoptosis, p53 pathway, and Alzheimer’s disease-

amyloid secretase. For HBTRC brains, we found 416

highly influential genes with 74 functional pathways

(Fig. 4B, E and Supplementary Tables 2 and 4). Eighty-

nine per cent of these pathways (i.e. 66) were also among

the most relevant pathways detected in ROSMAP brains.

Correspondingly, the GO over-represented pathways in

HBTRC brains were also highly sensitive for the detection

of biological processes commonly associated with

neurodegeneration.
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Figure 2 Gene expression-based predictions of neurodegenerative severity for ROSMAP, HBTRC and ADNI populations. (A–E)

Gene expression-pseudotime predictive associations with Braak (A and D), CERAD (B), Braak for Ab–/Ab+ (C), and Vonsattel (E) stages in

ROSMAP (A–E) and HBTRC (D and E). (F–J) Gene expression-pseudotime predictive associations with tau positivity (F), Ab positivity (G), tau-Ab
co-morbidity (H), cerebral infarct occurrence (I) and tau-Ab-infarct co-morbidity (J) in ADNI population. Points are laid over a 1.96 standard error

of the mean (SEM) (95% confidence interval) in red and at 1 SD in blue. All P-values are FWE-corrected (see reported values in the ‘Results’ section).

HD = Huntington’s disease.
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The highly predictive genes in both ROSMAP and

HBTRC were consistently related to five different cell

types (Fig. 4D), including astrocytes, endothelial cells,

microglia, neurons, and oligodendrocyte precursor cells.

Interestingly, the patterns of identified cell types differed

between these two brain datasets (Fig. 4D). Astrocytes

(38%) and oligodendrocyte precursor cells (35%) were

the most abundantly identified cell types in ROSMAP,

while microglia cells were under-represented (4%). On

the contrary, almost half of the identified cell types in

HBTRC corresponded to microglia (48%), although astro-

cytes and oligodendrocyte precursor cells still represented

significant proportions (22% and 17%, respectively). As

discussed below, the observed inter-dataset differences in

molecular pathways and brain cell types may respond

to multiple causes, such as the systematic (study-specific)

sampling at distinct brain locations, the use of different

gene expression mapping techniques with dissimilar

sensitivity/specificity capacities, and different population

characteristics.

Notably, 85% and 90% of the highly predictive molecular

pathways in the neurodegenerating brain (ROSMAP and

HBTRC, respectively) were also among the most relevant

pathways detected in the blood data (ADNI; Fig. 4C, E

and Supplementary Tables 2 and 5). The common blood–

brain functional pathways relevant for LOAD progression

included blood coagulation, angiogenesis (linked to the

formation of new blood vessels), p53 (modulating the

cell cycle and playing a major role in inhibition of angiogen-

esis), B cell activation (involved in immune system response),

and Wnt signalling (related to signal transduction), among

others (Fig. 4E and Supplementary Tables 3–5). The finding

of these common pathways is evidence of the direct relation-

ship between the CNS and the body, both in health and in

Figure 3 Blood gene expression-based predictions of clinical and cognitive deterioration for ADNI data. (A and B) Gene

expression-pseudotime associations with clinical diagnosis (A) and future clinical conversion (B). (C and D) Scatter plots showing negative

associations between molecular disease progression (reflected in gene expression-pseudotime) and measurements of cognitive integrity: memory

integrity (MEM) (C) and executive function (EF) (D). In A and B, points are laid over a 1.96 SEM (95% confidence interval) in red and at 1 SD in

blue, and P-values are FWE-corrected. In B, categories included are: stable healthy control (s-HC), converter healthy control (c-HC), stable MCI

(s-MCI) and converter MCI (c-MCI). EMCI = early MCI; LMCI = late MCI.
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disease. Their unsupervised data-driven identification, there-

fore, supported the crucial importance of studying the per-

iphery-brain axis (e.g. immune and vascular interactions

with brain integrity) for a better understanding of systemic

pathological mechanisms underlying neurodegeneration.

Interestingly, we also found another 15% and 10% of

highly predictive molecular pathways in the blood that

were not identified in the brain (ROSMAP and HBTRC,

respectively) (Fig. 4E and Supplementary Tables 3–5).

Similarly, 11% of the most predictive pathways identified

in HBTRC were not common with the pathways identified

in ROSMAP, and a clear difference in each pathway’s pres-

ence level across the three datasets was also noticed

(Fig. 4E and Supplementary Tables 3–5). These findings

may be associated with several reasons, including increased

pathological co-morbidity in the periphery relative to the

brain and/or crucial methodological limitations, such as the

analysis of three different populations with divergent dis-

ease characteristics, and the use of different gene expression

mapping techniques with dissimilar sensitivity/specificity

capacities.

Discussion
Because of the typically long developing period of most

prevalent neurodegenerative disorders, we lack exhaustive

longitudinal datasets covering the continuous molecular

transitions underlying disease progression. Consequently,

almost all of our knowledge of the subjacent pathological

mechanisms is based on data ‘snapshots’ taken and ana-

lysed at a few disease stages. Here, we aimed to overcome

this crucial gap by inferring the intrinsic temporal informa-

tion contained in large-scale neurodegenerative datasets.

For that, we implemented a novel pattern analysis

method that detects enriched gene expression trajectories

in a diseased population (e.g. subjects progressing towards

dementia) relative to a background population (e.g. a clin-

ically normal control group). Our results in three different

gene expression datasets (ROSMAP, HBTRC, ADNI) sup-

port the strong predictive power of this technique for iden-

tifying individual neuropathological stages and/or cognitive

deterioration. This may well have broad implications for

uncovering the dynamic mechanisms of molecular

Figure 4 Ontology analysis of top predictor genes of LOAD development. Significant molecular functions (A–C), cell types (D) and

molecular pathways (E) identified in the brain’s prefrontal cortex (PFC) (ROSMAP) and BA9 (HBTRC) areas, and the blood plasma (ADNI). (A–

C) Bars show the number of genes associated to the main GO over-represented categories. In E, only common pathways identified across the

three populations are shown (for complete lists of genes and pathways, see Supplementary Tables 2–5). The colour scale indicates the presence

level (in %) of each functional pathway (e.g. dark blue for absent pathways, red for highly represented pathways).
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pathology, patient stratification in the clinic, and monitor-

ing response to personalized treatments in

neurodegeneration.

A minimally invasive molecular test for neurodegenera-

tion could lead to better treatment and therapies (Ray

et al., 2007; Park et al., 2019). An additional aim of this

study was to identify an in vivo peripheral biomarker able

to predict the individual’s pathophysiology and cognitive

decline. When tested in 744 blood samples from ADNI,

the proposed GE-cTI showed a significant association

with amyloid, tau and infarcts positivity (Fig. 2F–J).

Furthermore, it was significantly associated with clinical

deterioration and conversion (Fig. 3A and B). The fact

that the proposed machine learning model is unsupervised

(i.e. the neuropathological and clinical variables are not

used to train a predictive model), guarantees absence of

possible circularity or data overfitting. Consequently, we

can infer that the obtained genetic trajectories and the asso-

ciated gene expression-pseudotime values are direct meas-

ures of molecular integrity, obtained independently of

phenotypic variables, and would therefore be useful as un-

biased biomarkers in clinical applications.

Our analysis of most relevant molecular pathways for

predicting LOAD progression revealed a striking similarity

between peripheral and intrabrain pathological mechan-

isms. Eighty-five to ninety per cent of the most predictive

molecular pathways identified in the post-mortem brains

were also identified as top predictors in the blood. These

pathways support the importance of studying the periph-

eral-brain axis, providing further evidence for a key role of

vascular structure and functioning (Bell and Zlokovic,

2009; Iturria-Medina et al., 2016, 2017), and immune

system response (Gendelman, 2002; Streit et al., 2004;

Labzin et al., 2018). The multi-tissue analysis based on

genetic trajectories may be particularly useful for clarifying

both local (tissue-specific) and systemic (inter-organs) neu-

rodegenerative mechanisms.

Our method built on the pseudotemporal trajectory in-

ference field (Magwene et al., 2003; Gupta and Bar-Joseph,

2008; Cannoodt et al., 2016; Welch et al., 2016).

Modelling the dynamics of gene regulation, rather than

focusing on static time points, is crucial for clarifying cel-

lular transitions and what goes wrong in the case of disease

(Cannoodt et al., 2016). We attempted to extend previous

models by incorporating the use of a novel contrastive

dimensionality reduction technique (cPCA; Abid et al.,

2018), which allows detecting enriched patterns in the

population of interest while adjusting by confounding com-

ponents in the background population (e.g. concurrent

ageing effects). We observed that this technique (cPCA)

was significantly more sensitive to detecting disease pro-

gression than other popular dimensionality reduction meth-

ods (i.e. PCA and UMAP) (Supplementary Fig. 1). In a set

of complementary analyses (data not shown), we observed

that, in comparison with other state-of-the-art trajectory

inference methods (Welch et al., 2016; Campbell and

Yau, 2018), this extension provides a considerably higher

sensitivity to detect diseased gene expression components

(i.e. other methods could not predict neuropathology, nor

clinical deterioration). In addition to uncovering disease

dynamics, cTI may enable the data-driven identification of

new subpopulations within a heterogeneous neurodegenera-

tive population (Trapnell et al., 2014; Trapnell, 2015;

Cannoodt et al., 2016), with strong implications for preci-

sion medicine and the selective enrolment of patients in

clinical trials. Furthermore, once the data are ordered, it

could also improve the inference of causative regulatory

interactions underlying a disorder (Cannoodt et al., 2016).

Another advantage of cTI (and trajectory inference in

general) is the ability to deal with high dimensional data.

This is a key feature for the concurrent analysis of ‘multi-

omics’, potentially allowing the exploration of multiple and

complementary modalities, such as transcriptomics, prote-

omics, metabolomics and epigenomics. Contrastive trajec-

tory inference can also be applied to the analysis of data

from other fields, including multimodal brain imaging, en-

vironmental and cognitive/clinical information. Finally, al-

though our study focused on neurodegenerative evolution,

in general, cTI can be applicable to the study of multiple

neurological and neuropsychiatric conditions.
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